Cotorsion Theories and Splitters

نویسندگان

  • Rüdiger Göbel
  • Saharon Shelah
چکیده

Let R be a subring of the rationals. We want to investigate self splitting R-modules G that is ExtR(G,G) = 0 holds and follow Schultz [22] to call such modules splitters. Free modules and torsion-free cotorsion modules are classical examples for splitters. Are there others? Answering an open problem by Schultz [22] we will show that there are more splitters, in fact we are able to prescribe their endomorphism R-algebras with a free R-module structure. As a byproduct we are able to answer a problem of Salce [21] showing that all rational cotorsion theories have enough injectives and enough projectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Make Ext Vanish

We describe a general construction of a module A from a given module B such that Ext(B,A) = 0 and we apply it to answer several questions on splitters, cotorsion theories, and saturated rings.

متن کامل

Notes on Cotorsion Theories and Model Categories

These are notes for two talks given by Mark Hovey at the Summer School on the Interactions between Homotopy Theory and Algebra at the University of Chicago, July 26 to August 6, 2004. Because they are notes, they are a bit more chatty and a bit more likely to contain errors than a paper would be, so caveat lector. They are based on the papers [Hov02], [Gil04b], and [Gil04a], and concern the rel...

متن کامل

COTORSION DIMENSIONS OVER GROUP RINGS

Let $Gamma$ be a group, $Gamma'$ a subgroup of $Gamma$ with finite index and $M$ be a $Gamma$-module. We show that $M$ is cotorsion if and only if it is cotorsion as a $Gamma'$-module. Using this result, we prove that the global cotorsion dimensions of rings $ZGamma$ and $ZGamma'$ are equal.

متن کامل

Relative Cotorsion Modules and Relative Flat Modules

Let R be a ring, M a right R-module, and n a fixed non-negative integer. M is called n-cotorsion if Extn+1 R N M = 0 for any flat right R-module N . M is said to be n-flat if ExtR M N = 0 for any n-cotorsion right R-module N . We prove that ( n n is a complete hereditary cotorsion theory, where n (resp. n) denotes the class of all n-flat (resp. n-cotorsion) right R-modules. Several applications...

متن کامل

Sigma-cotorsion Modules over Valuation Domains

We give a characterization of Σ-cotorsion modules over valuation domains in terms of descending chain conditions on certain chains of definable subgroups. We prove that pure submodules, direct products and modules elementarily equivalent to a Σ-cotorsion module are again Σ-cotorsion. Moreover, we describe the structure of Σ-cotorsion modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000